Optimality of local multilevel methods on adaptively refined meshes for elliptic boundary value problems

نویسندگان

  • Xuejun Xu
  • Huangxin Chen
  • Ronald H. W. Hoppe
چکیده

A local multilevel product algorithm and its additive version are analyzed for linear systems arising from the application of adaptive finite element methods to second order elliptic boundary value problems. The abstract Schwarz theory is applied to verify uniform convergence of local multilevel methods featuring Jacobi and Gauss-Seidel smoothing only on local nodes. By this abstract theory, convergence estimates can be further derived for the hierarchical basis multigrid method and the hierarchical basis preconditioning method on locally refined meshes, where local smoothing is performed only on new nodes. Numerical experiments confirm the optimality of the suggested algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal-order Nonnested Multigrid Methods for Solving Finite Element Equations Ii: on Non-quasi-uniform Meshes

Nonnested multigrid methods are proved to be optimal-order solvers for finite element equations arising from elliptic problems in the presence of singularities caused by re-entrant corners and abrupt changes in the boundary conditions, where the multilevel grids are appropriately refined near singularities and are not necessarily nested. Therefore, optimal and realistic finer grids (compared wi...

متن کامل

Adaptive Multilevel Techniques for Mixed Finite Element Discretizations of Elliptic Boundary Value Problems Technische Universit at M Unchen Cataloging Data : Adaptive Multilevel Techniques for Mixed Finite Element Discretizations of Elliptic Boundary Value Problems

We consider mixed nite element discretizations of linear second order elliptic boundary value problems with respect to an adaptively generated hierarchy of possibly highly nonuniform simplicial triangula-tions. By a well known postprocessing technique the discrete problem is equivalent to a modiied nonconforming discretization which is solved by preconditioned cg-iterations using a multilevel B...

متن کامل

Partition of Unity Refinement for local approximation

In this article, we propose a Partition ofUnity Refinement (PUR)method to improve the local approximations of elliptic boundary value problems in regions of interest. The PUR method only needs to refine the local meshes and hanging nodes generate no difficulty. The mesh qualities such as uniformity or quasi-uniformity are kept. The advantages of the PUR include its effectiveness and relatively ...

متن کامل

Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems

Abstract In this paper we prove the uniform convergence of the standard multigrid V-cycle algorithm with Gauss-Seidel relaxation performed only on new nodes and their “immediate” neighbors for discrete elliptic problems on adaptively refined finite element meshes using the newest vertex bisection algorithm. The proof depends on sharp estimates on the relationship of local mesh sizes and a new s...

متن کامل

Adaptive Multilevel Techniques for Mixed Finite Element Discretizations of Elliptic Boundary Value Problems

We consider mixed nite element discretizations of linear second order elliptic boundary value problems with respect to an adaptively generated hierarchy of possibly highly nonuniform simplicial triangula-tions. By a well known postprocessing technique the discrete problem is equivalent to a modiied nonconforming discretization which is solved by preconditioned cg-iterations using a multilevel B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Num. Math.

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2010